Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 9(12): 6870-6879, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37943794

RESUMO

Dermatomycoses are typical hair, skin, or nail infections caused mainly by dermatophytes and nondermatophytes: Trichophyton, Microsporum, Epidermophyton, and Candida. In addition to the esthetical impact, pain, and nail deformity, these mycoses can be a source of severe disease. The high cost of treatment, toxicity, and the emergence of resistant infectious agents justifies research into new drugs. This work evaluates the fungicidal activity of nanocomposites (NCs) based on reduced graphene oxide (rGO) loaded with silver (Ag) nanoparticles (rGO/Ag) against clinical isolates of dermatophytes and Candida species. This is an unprecedented study in which, for the first time, hybrid nanocompounds based on Ag/rGO were tested against Epidermophytom, Microsporum, and Trichophyton species (dermatophytes agents). In this paper, we synthesize rGO using different concentrations of Ag by hydrolysis of metal salt AgNO3 and follow the growth of nanocrystals on sheets of rGO provided by the NaBH4. The NCs were analyzed by X-ray diffraction analysis, and the NC morphology, silver distribution on the rGO surface, and crystalline information were investigated by transmission electron microscopy. Antifungal susceptibility assay was performed by the microdilution method based on modified Clinical and Laboratory Standards Institute (CLSI) protocol. Time-kill kinetics was conducted to monitor the effect of the composite to inhibit fungal cells or promote structural changes, avoiding germination. The toxicological evaluation of the NCs was born in an in vivo model based on Galleria mellonella (G. mellonella). Minimum inhibitory concentration (MIC) values of the rGO/Ag NCs ranged from 1.9 to 125 µg/mL. The best inhibitory activity was obtained for rGO/Ag12%, mainly against Candida spp. and Epidermophyton floccosum. In the presence of sorbitol, MIC values of rGO/Ag NCs were higher (ranging from 15.6 to 250 µg/mL), indicating the action mechanism on the cell wall. Both yeast and dermatophytes clinical isolates were inhibited at a minimum of 6 and 24 h, respectively, but after 2 and 12 h, they had initial antifungal interference. All hybrid formulations of rGO/Ag NCs were not toxic for G. mellonella. This study provides insights into an alternative therapeutic strategy for controlling dermatomycoses.


Assuntos
Arthrodermataceae , Dermatomicoses , Nanocompostos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida , Prata/farmacologia , Trichophyton , Dermatomicoses/tratamento farmacológico
3.
J Fungi (Basel) ; 6(3)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796579

RESUMO

Paracoccidioides brasiliensis complex and P. lutzii are the etiological agents of paracoccidioidomycosis. The geographic distribution of these species in South America is still poorly comprehended. Fifty samples of Paracoccidioides spp. were genotyped, with 46 clinical isolates predominantly isolated in the geographic area of Ribeirão Preto, SP, and four environmental isolates collected in Ibiá, MG, southeastern Brazil. These isolates were evaluated by PCR-RFLP (Restriction Fragment Length Polymorphism) of the tub1 gene and the sequencing of the gp43 exon 2 loci. The species P. lutzii was confirmed by sequencing the internal transcribed spacer (ITS) region of the ribosomal DNA. P. brasiliensis sensu stricto S1b (n = 42) and S1a (n = 5), P. americana (n = 1), P. restrepiensis (n = 1), and P. lutzii (n = 1) were identified among the clinical isolates. All the environmental isolates were characterized as P. brasiliensis sensu stricto S1b. The patient infection by P. lutzii, P. americana (PS2), and one isolate of P. brasiliensis sensu stricto S1b most likely occurred in a geographic area far from the fungal isolation site. No association was found between the infecting genotype and the disease form. These results expand the knowledge of the Paracoccidioides species distribution and emphasize that human migration must also be considered to pinpoint the genotypes in the endemic area.

4.
Fungal Biol ; 122(6): 386-399, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29801782

RESUMO

The topic of 'fungal stress' is central to many important disciplines, including medical mycology, chronobiology, plant and insect pathology, industrial microbiology, material sciences, and astrobiology. The International Symposium on Fungal Stress (ISFUS) brought together researchers, who study fungal stress in a variety of fields. The second ISFUS was held in May 8-11 2017 in Goiania, Goiás, Brazil and hosted by the Instituto de Patologia Tropical e Saúde Pública at the Universidade Federal de Goiás. It was supported by grants from CAPES and FAPEG. Twenty-seven speakers from 15 countries presented their research related to fungal stress biology. The Symposium was divided into seven topics: 1. Fungal biology in extreme environments; 2. Stress mechanisms and responses in fungi: molecular biology, biochemistry, biophysics, and cellular biology; 3. Fungal photobiology in the context of stress; 4. Role of stress in fungal pathogenesis; 5. Fungal stress and bioremediation; 6. Fungal stress in agriculture and forestry; and 7. Fungal stress in industrial applications. This article provides an overview of the science presented and discussed at ISFUS-2017.


Assuntos
Fungos/fisiologia , Fungos/patogenicidade , Estresse Fisiológico , Brasil , Microbiologia Ambiental , Microbiologia Industrial , Micologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...